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Chromatography  has  been  extensively  applied  in  many  fields,  such  as  metabolomics  and  quality  control
of  herbal  medicines.  Preprocessing,  especially  peak  alignment,  is  a time-consuming  task  prior  to  the
extraction  of  useful  information  from  the  datasets  by  chemometrics  and  statistics.  To  accurately  and
rapidly  align  shift  peaks  among  one-dimensional  chromatograms,  multiscale  peak  alignment  (MSPA)  is
presented in  this  research.  Peaks  of each  chromatogram  were  detected  based  on  continuous  wavelet
eywords:
hromatography
eak alignment
ast Fourier transform
ross correlation

transform  (CWT)  and  aligned  against  a  reference  chromatogram  from  large  to  small  scale  gradually,
and  the  aligning  procedure  is accelerated  by fast  Fourier  transform  cross  correlation.  The  presented
method  was  compared  with  two  widely  used  alignment  methods  on  chromatographic  dataset,  which
demonstrates  that  MSPA  can preserve  the  shapes  of peaks  and has  an  excellent  speed  during  alignment.
Furthermore,  MSPA  method  is  robust  and  not  sensitive  to  noise  and  baseline.  MSPA  was implemented
and  is  available  at http://code.google.com/p/mspa.
hannon information content

. Introduction

Chromatography with various detectors can provide quantifi-
ation and identification information of complex systems at an
nprecedented level [1],  which has been extensively applied to
etabolomics [2,3], quality control of herbal medicines [4,5] and

ther fields. For example, gas chromatography (GC) technique can
etect, identify and quantify volatile compounds in metabolites
nd herb medicines’ extractions, and liquid chromatography (LC)
echnique with electrospray ionization (ESI) can detect and quan-
ify nonvolatile compounds complementary to GC [6].  However,
oth metabolomics and quality control of herbal medicines involve
assive experiments and dataset collection, and the datasets usu-

lly are generated through experiments performed on different
amples. In order to capture differences among samples caused
y their composition, the key point of an experiment is to limit
xperimental variability as much as possible. However, devia-
ions from normal conditions may  appear, causing peak shifts
bserved among signals. For this reason, the acquired datasets
re often too complex to easily extract meaningful information.
ecently, great efforts have been made by chemometricians to
rovide researchers in quality control of herbal medicines with
hemometrics and chemometrical toolbox to cope, analyze and

nterpret these complex datasets [4,7]. In order to evaluate the fin-
erprints of herbal products, several novel chemometric methods
ave been developed, such as the methods based on information
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theory [8],  pretreatments [9,10],  alignment [11,12], spectral cor-
relative chromatogram [13] and multivariate resolution [14,15]. In
metabolomics, the usages of more and more variables to character-
ize samples have driven researchers from traditional statistics to
chemometric methods such as principal component analysis (PCA)
[16], partial least squares (PLS) [17] and their derivatives [18–20],
since they are more efficient and capable of handling collinear
datasets.

Chromatograms consist of peaks corresponding to components
of the mixtures, and ideally peaks of the same component of dif-
ferent samples should have an equal retention time. But in real
analysis, the dataset does not conform to this hypothesis due to
retention time shifts between samples. Since the bilinear factor
models are the basic requirement of foundational chemometric
algorithms such as PCA and PLS [21], peak alignment is necessary to
reduce the variation in peak positions, which can improve useful
information extraction using chemometrics and statistics. Glanc-
ing at literatures, dozens of methods have been proposed to align
shifts in peak positions among spectra of different samples when
analytical instruments, such as chromatography, nuclear magnetic
resonance (NMR) and mass spectrometry, are used. Generally, they
can be divided into two  major categories: synchronize entire sig-
nals and handle only the detected peaks.

Alignment methods that synchronize entire signals usually
divide signals into segments, warping these segments by interpo-
lation or transformation to maximize correlation between signal

to be aligned and reference. The concept of time warp was ini-
tially introduced to align retention time shift of chromatograms
by Wang and Isenhour [22]. By then in 1998, two practical align-
ment methods were introduced, dynamic time warping (DTW) [23],

dx.doi.org/10.1016/j.chroma.2011.12.047
http://www.sciencedirect.com/science/journal/00219673
http://www.elsevier.com/locate/chroma
http://code.google.com/p/mspa
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pplied to the analysis and monitoring of batch processes and cor-
elation optimized warping (COW) [24], proposed by Nielsen for
hromatograms. Both DTW and COW utilize dynamic programming
o search all solutions with respect to all possible combinations
f parameters, and they have been demonstrated to be effective
n chromatograms at that moment. But currently, chromatogram
ften contains several thousands of data points, original COW is
ot suitable for these signals due to large requirements in both
xecution time and memory, and DTW often “over-warps” sig-
als and introduces artifacts into the aligned profiles when signals
ere only recorded using a mono-channel detector [25]. There-

ore, many heuristic optimization methods, parametric model and
ast correlation algorithms have been applied to accelerate this
ime-consuming procedure and improve the aligning result. In
rder to improve the computational cost and optimize mem-
ry usage of DTW, some global constraints were introduced by
akoe and Chiba [26]. Stan [27] introduced FastDTW, an approx-
mation of DTW that has a linear time and space complexity.
enetic algorithm [28] and beam search [29] were adopted to
lign large signals in acceptable time, but it is difficult to opti-
ize the segment size. Eilers proposed a parametric model for the
arping function, and presented parametric time warping (PTW)

30], which is fast, stable and consumes little memory. Pravdova
31] and van Nederkassel [32] compared DTW, COW and PTW
or chromatogram alignment. Wong [33,34] applied fast Fourier
ransform (FFT) cross correlation to estimate shift between seg-

ents, which is amazingly fast and has solved computational
nefficiency problems of alignment. However, both peak alignment
y FFT (PAFFT) and recursive alignment by FFT (RAFFT) move seg-
ents by insertion and deletion of data points at the start and

nd of segments without considering peak information, which may
hange the shapes of peaks by introducing artifacts and removing
eak points [35]. Based on RAFFT and PAFFT, recursive segment-
ise peak alignment (RSPA) [36] was proposed by Veselkov to

mprove the accuracy of alignment using peak position infor-
ation for recursive segmentation and interval correlation shift

icoshift) [35,37]. This method can reduce the artifacts by insert-
ng missing values instead of repeating the value on boundary.
ariable penalty dynamic time warping was proposed by Clif-

ord [25] to overcome DTW’s “over-warps” shortcomings. Recently,
aszykowski [38] proposed an automatic peak alignment method
y explicitly modeling the warping function for chromatographic
ngerprints.

Among others, fuzzy warping and reduced set mapping often
onvert signals into peaks’ lists, which can speed up alignment
y reducing the dimensions of problems dramatically [39–44].  But
hey align major peaks at the expense of minor peaks, which are
arder to detect. Besides, they are prone to misalignment in special
eak regions, such as peaks with shoulder, overlapping peaks and
eak dense region.

There are also many mature and competing alignment algo-
ithms or toolbox including alignment algorithms in metabolomics
nd bioinformatics. MSFACTs [45] can automatically import, refor-
at  and align large chromatographic datasets. MZmine [46] was

roposed and implemented by Katajamaa, which contains meth-
ds for all data processing stages including spectral filtering, peak
etection, alignment and normalization of LC/MS data in pro-
eomics and metabolomics. XCMS [6],  XCMS2 [47] and metaXCMS
48] were developed by Scripps Center for Metabolomics, providing
he researchers with a series of tools for preprocessing, analyzing,
nd visualizing datasets from hyphenated instruments. MetAlign
49] can preprocess and align a broad range of accurate mass

nd nominal mass datasets. MetaboAnalyst [50,51] provides an
ntegrated web-based platform for data processing, data normal-
zation, statistical analysis and high-level functional interpretation
f metabolomics dataset.
r. A 1223 (2012) 93– 106

In  this paper, MSPA method is proposed. MSPA can rapidly
align sample signal toward a reference without altering the peaks’
shapes. By transforming the chromatogram into the wavelet space
using CWT  with Haar wavelet as the mother wavelet, peaks can
be accurately and robustly detected. Subsequently, we  can calcu-
late Shannon information content for each detected peak, and pick
out peak of each segment with the smallest Shannon information
content value to iteratively divide chromatogram or each segment
into smaller segments. Then candidate shifts of each segment can
be rapidly found by FFT cross correlation. The optimal shift for
each segment can be determined by combining candidate shifts of
adjacent segment to maximize the correlation coefficient. Finally,
we move the segments via linear interpolation of non-peak parts.
This iterative procedure will stop when all the segments are well
aligned. One can see that MSPA gradually aligns peaks from small to
large scale, which is the reason why the proposed method is named
as multiscale peak alignment (MSPA).

This paper is organized as follows. First of all, relevant principles
to MSPA are described and dissected in Section 2, including peak
detection, width estimation, Shannon information content, FFT
cross correlation, candidate shift estimation, optimal shift deter-
mination by combining candidate shifts of adjacent segments and
segments move via linear interpolation of non-peak parts. Then
details of simulated signal and experiments of real chromatograms
are introduced, and alignment results will be presented together
with discussions about MSPA method. Finally, some conclusions
and perspectives are given in Section 5.

2. Theory and implementation

The heart of MSPA is the usages of local maximums in FFT
cross correlation as candidate shifts, which can guarantee accuracy
and alignment speed. Additionally, it also includes several tech-
niques for peak detection, width estimation, iterative segmentation
and optimal shift determination. Fig. 1 describes architecture and
overview of MSPA method. The techniques used in MSPA will be
explained as thoroughly and clearly as possible in the next sections.

2.1. Peak detection and width estimation

Peak detection and width estimation are universal problems in
instrument signal analysis, and various criteria have been proposed
such as signal to noise ratio (SNR), intensity threshold, slopes of
peaks, local maximum, shape ratio, ridge lines, and model-based
criterion [52]. In this study, a derivative calculation method via CWT
[53] was  used for peak detection and width estimation, and SNR to
eliminate false positive peak.

In order to detect peak position and estimate its start and end
points, derivative calculation is often applied. However, the sim-
plest numerical differentiation is not very effective for real signal
due to the noise increasing drawback, so derivative calculation via
Haar CWT  was adopted to improve SNR during the calculation.
Wavelet transform is one of the most powerful tools in signal analy-
sis [54,55]. Wavelet is a series of functions  a,b(t), which are derived
from  (t) by scaling and shifting, according to the equation:

 a,b(t) = 1√
a
 
(
t − b

a

)
; a ∈ R+, b ∈ R (1)

where a is the scale parameter to control scaling, b the shift param-
eter to control shifting, and  (t) is the mother wavelet.

Wavelet transform is defined as the projection of signal onto
the wavelet function  . Mathematically, this process can be repre-

sented as:

C(a, b) = 〈s(t),  a,b(t)〉 =
∫ +∞

−∞
s(t) a,b(t) dt (2)
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Fig. 1. Flow chart for describing the a

ere s(t) is the signal, and C is a 2D matrix of wavelet coefficients.
The approximate nth derivative of an analytical signal can be

btained by applying Haar CWT  n times to the signal. Haar wavelet
s the simplest wavelet function among all the wavelet functions,

hich can be defined as:

(t) =

⎧⎨
⎩

1 0 ≤ t < 1/2
−1

0

1/2 ≤ t < 1

other

(3)

Peak can be defined as a local maximum of N neighboring points,
hose intensity is significantly larger than the noise level. The local
aximums can be found from the derivative calculation via Haar

WT  of the signal. Then, false positive peaks are eliminated from
hose SNR is lower than a pre-specified threshold. Similar to find-

ng of the peak position, the start and end points of each peak can
lso be found by this derivative calculation method. For each peak,
ts start and end points can be obtained by searching the nearest
oint from its peak position in the vector of detected peak position
nd peak width. Principles for peak detection and width estima-
ion are concisely illustrated in Fig. 2. The middle part of the figure
epicts derivative calculation via Haar CWT. The top and bottom
arts of this figure describe peak detection and width estimation,
espectively.

.2. Segmentation based on Shannon information content

There exist different scale peaks in signal. When correlation
ased alignment methods are used, it is intuitive that alignment of

arge scale peak is easier than small scale peak. One could also say
hat the difficulty level of aligning the specific scale peak has direct

elationship with the uncertainty of this peak in the entire signal
rofile. In information theory [56], Shannon information content is

 good measurement of uncertainty. Consequently, Shannon infor-
ation content of peaks can be regarded as a good measurement of
cture and overview of MSPA method.

the difficulty level of specific scale peak. The Shannon information
content is defined to be:

hi = −log2 pi (4)

where pi is the probability of distribution function and hi is Shan-
non information content.

Some reasonable modifications [8] should be employed on the
equation above to calculate Shannon information content of peaks
in the chromatogram. Firstly, the signal is normalized with its over-
all peak area equal to one and then its information content is
calculated based on:

hi = −log2
pi∑

pi
(5)

where pi is the area of the ith peak or peak cluster of the real
chromatogram, and

∑
pi is the overall peak area of the real chro-

matogram.
A small Shannon information content of a peak means a small

uncertainty and large scale, and vice versa. It is intuitive that the
large scale peak with small uncertainty should have priority over
small scale peaks during alignment, so peaks were aligned in MSPA
against the reference chromatogram from larger to smaller scale
gradually. The iterative segmentation scheme is illustrated in Fig. 3.

2.3. Candidate shift detection via FFT cross correlation

Cross-correlation is a standard method to measure the similarity
and linear shift of two  signals as one is time-lag to the other, which
involves shifting one signal and calculating the correlation coeffi-
cient between the shifted one and the other. For two continuous
functions, r and s, the cross-correlation of them at lag j is defined

as:

c(j) =
∫ +∞

−∞
r(x)s(x + j) dx (6)
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ig. 2. Principles for peak detection and width estimation using derivative calculat

imilarly, for discrete signal such as chromatograms, the cross-
orrelation is defined as:

(j) =
∑

i(r(i) − r̄)(s(i + j) − s̄)√∑
i(r(i) − r̄)2

√∑
i(s(i + j) − s̄)2

(7)

here r is the reference signal, s the signal to be aligned, c the
ross-correlation values for all lags.

The direct evaluation of cross correlation requires O(N2) time
omplexity for a chromatogram of length N, which is time-
onsuming for chromatograms with several thousands of data
oints. Fortunately, cross correlation can be calculated via FFT to
chieve a much better performance, which can dramatically reduce
ime complexity of cross correlation from O(N2) to O(N log N). FFT
omputes discrete Fourier transform (DFT) and produces the same
esult as DFT. In order to clarify how to calculate cross correlation
ia FFT, a brief introduction about DFT is required. The forward and
everse DFT is defined by the formulas

Xk =
N−1∑

xn e
−(2�i/N)kn; k = 0, . . . , N − 1
n=0

xn = 1
N

N−1∑
n=0

Xk e
(2�i/N)kn; k = 0, . . . , N − 1

(8)
sed on continuous wavelet transform with Haar wavelet as the mother wavelet.

where X is the discrete Fourier transformed data in the wavelength
domain. DFT and inverse DFT are often denoted by X = �{x} and
x = �−1{X} respectively.

If R and S are DFTs of r and s then circular convolution theorem
and cross-correlation theorem [57] for DFT state:

c = �−1{R · S∗} (9)

here c is cross correlation between r and s, and S* is the complex
conjugate of S.

FFT cross correlation can only estimate linear shift between sig-
nals, but retention time shifts are often nonlinear for chromatogram
of real sample. In MSPA method, chromatogram to be aligned will
be iteratively divided into small segments and FFT cross correlation
will be used to estimate candidate shifts for each segment and align
peaks from large scale to small scale gradually. This strategy can
solve the alignment of nonlinear retention time shifting problem
by FFT cross correlation.

Previous alignment methods based on FFT cross correlation only
use the maximum of cross correlation as the optimal shift. But the
maximum of cross correlation of small segment as the optimal

shift may  sometimes be the optimal shift locally but not optimal
at larger scale or globally. Therefore, all the local maximums of FFT
cross correlation should be detected as the candidate shifts via CWT
derivative calculation. Then the optimal shift is found by combining
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Fig. 3. Scheme of iterative segmentation of chromatogram based on Shannon information content.

Fig. 4. Candidate shift detection of simulated chromatograms by finding the local maximums in FFT cross-correlation.
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ig. 5. Example shows the collision in the shift with only the largest cross correlati

he candidate shifts of several adjacent segments to avoid locally
ptimal problem.

Here is one simple example for candidate shift detection of
imulated chromatograms. Consider two chromatograms (the ref-
rence one is denoted as r and test one is s) that differ by an
nknown shift along the retention time. One can rapidly calculate
ross-correlation c between s and r using FFT cross correlation, and
he candidate shifts between s and r can be found at the local max-
mums of c. Fig. 4 depicts this procedure visually. The number 20 of
andidate shifts in Fig. 4 means shift the test profile by 20 points and
he maximum cross-correlation between test and reference profile
ill be obtained.

.4. Optimal shift determination

Sometimes the maximum of cross correlation of small segment
s the optimal shift may  be not the optimal shift at larger scale or
lobally. To avoid this problem, the candidate shifts can be detected
sing FFT cross correlation and CWT  derivative according to Sec-
ion 2.3; then, the optimal shift of each segment can be determined
y combining the candidate shifts of several adjacent segments to
aximize the correlation coefficient between test profile and refer-

nce profile. Fig. 5 is an example of simulated chromatograms with
ollision in the optimal shift between different segments, when
nly the largest cross correlation is used as the optimal shift. By
ombination of the local maximums of adjacent segments, one can
ee that MSPA can obtain more reasonable aligning result and larger
orrelation coefficient.
.5. Move segments

By warping the non-peak parts to move the segments with peaks
sing linear interpolation, the detected peaks in each segment can
d how to solve this problem by combining candidate shifts of adjacent segments.

be aligned without altering their shapes. It can reduce the emer-
gence of artifacts by linear interpolation of the non-peak parts. The
linear interpolation of the non-peak parts can also conserve the
information of small peaks as much as possible, which are difficult
to detect.

2.6. Implementation

All these works were done on a Dell Inspiron 530 PC
with an Intel® CoreTM2 Quad Q6600 processor and 2048M
memory. This method is implemented and available at
http://code.google.com/p/mspa. MSPA can rapidly and accu-
rately align chromatograms. The user is required to provide the
dataset with some intuitive parameters such as reference and
test profiles, SNR threshold for peak detection, allowed maxi-
mum  shift parameter for each segment. During detection of the
candidate shifts via FFT cross correlation, the candidate shifts
should not be excessively large. Here the allowed maximum shift
parameter for each segment can be used to prevent overshifting
problem.

3. Experimental

To illustrate the used techniques in MSPA and demon-
strate the effect of MSPA, three datasets have been used.
Firstly, simulated chromatograms were constructed to test its
basic functions. Then MSPA was  applied to two experimen-
tal chromatographic datasets, covering from total ion chro-

matograms (TIC) of plasma metabolites to HPLC fingerprints
of herb medicine extractions to evaluate its alignment perfor-
mance. The summary of these three datasets is presented in
Table 1.

http://code.google.com/p/mspa
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Table  1
Dataset summary of simulated, free fatty acids (FFAs) in plasma and fructus aurantii
immaturus (FAI).

Simulated
dataset

FFAs
dataset

FAI
datasets

3

[
r
e
i
d
m
v

3

f
C
a
a
w
C
T
a

F
a

No. of samples 1 121 38
Sample length 900 3900 12,000

.1. Simulated chromatograms

Simulated chromatograms were created according to literature
24], which consist of Gaussian peaks, sinus curve baseline and
andom noise. These two simulated chromatograms have differ-
nt peak position, noise level and baseline drifts, which are shown
n Fig. 6(a). The solid one is the reference, whose noise is normally
istributed with variance 1. The dashed one is the simulated chro-
atogram to be aligned, whose noise is normally distributed with

ariance 0.2.

.2. Total ion chromatograms of free fatty acids in plasma

A total of 121 overnight fasting plasma samples were collected
rom patients at the Xiangya Hospital of Hunan, Changsha city of
hina. Each blood sample was centrifuged at 3000 × g for 10 min
nd transferred into a clean Eppendorf tube. The EDTA–Na2 was
dded as anticoagulant. Aliquots (200 �l) of plasma were spiked

ith internal standard (I.S.) working solution (25 �l C17:0 and 25 �l
17:0 methyl ester), lipid extraction was carried out using hexane.
he methyl esters of free fatty acids (FFAs) were extracted into hex-
ne after the first esterification reaction, and the hexane phase was

ig. 6. Simulated chromatograms: (a) plots of simulated chromatograms before
ligning and (b) after aligning using MSPA.
r. A 1223 (2012) 93– 106 99

removed. Then, the methyl esters of free fatty acids (FFAs) were
also extracted into hexane after the second esterification reaction,
and concentrated under N2 gas. Hexane (100 �l) was  added to each
tube prior to analysis. Chromatography and mass detection were
performed on Shimadzu GC2010A (Kyoto, Japan) coupled to GCMS-
QP2010 mass spectrometer. For each run, 1.0 �l plasma extractions
were injected into DB-23 capillary column (30 m × 0.25 mm  i.d.,
film thickness 0.25 �m)  with split ratio of the injector being 1:10.
Helium carrier gas was used at a constant flow rate of 1.0 ml  min−1.
Column temperature was programmed from 70 ◦C to 220 ◦C. Mass
spectra from 30 to 450 amu  were collected at 0.2 s scan−1. The ion-
ization voltage was 70 eV and ion source temperature was  200 ◦C.

3.3. HPLC fingerprints of fructus aurantii immaturus

HPLC fingerprints of 38 samples of fructus aurantii immatu-
rus (FAI) from nineteen provinces (or municipality) of China and
a standard sample from National Institute for Control of Pharma-
ceutical and Biological Products were measured using Agilent/HP
1100 Series HPLC-DAD system (Agilent, Palo Alto, CA, USA). The pul-
verized FAI sample (60 mesh, 0.5 g) was  placed into 150 ml round
bottom flask, then extracted for 10 min  at room temperature under
ultrasound with 25 ml  methanol and finally filtered. For each run,
20 �l herbal medicine extractions were injected into Sepax column
(C18, 5 �m,  250 mm × 4.6 mm).  The mobile phase consisted of ace-
tonitrile, methanol and 0.05% polyphosphoric acid. The flow rate
was 0.8 ml  min−1, column temperature was  maintained at 30 ◦C.
The DAD was set at 284 nm for acquiring chromatograms. The data
were exported in netcdf format using HP chemstations (version
A.09.01) for further analysis using MSPA method.

4. Results and discussion

Alignment results on both simulated and real chromatograms
will be presented to evaluate the performance of MSPA method. By
comparing MSPA with several widely used alignment methods, one
can see the advantages of MSPA. The obtained results will also be
discussed as well as some key points about MSPA and the effects of
some parameters are discussed to explore the properties of MSPA.

4.1. Simulated chromatograms

The effect of MSPA method was  firstly benchmarked using sim-
ulated chromatographic dataset with overlapped peaks, baseline
and noises. Fig. 6 shows the alignment results. It can be seen in
Fig. 6(a) that peaks were shifted nonlinearly between the reference
and the chromatogram to be aligned, and the position, start and
end points of the peaks from the chromatogram to be aligned can be
exactly detected with Haar wavelet. All the peaks of chromatogram
to be aligned have been synchronized to match the reference chro-
matogram after alignment by MSPA method in Fig. 6(b), which
demonstrated MSPA can align chromatograms with overlapping
peaks, baselines and different level noises.

4.2. Total ion chromatograms of free fatty acids in plasma

The MSPA method was run on TIC of free fatty acids in plasma
to test its performance on metabolomics dataset. Both unaligned
chromatograms (left part) and chromatograms aligned by MSPA
(right part) are illustrated in Fig. 7, and some peaks are zoomed in to
demonstrate the performance of MSPA method in a more clear way.
One can see from the zoomed regions of unaligned chromatogram

that there exist variations in peak positions. After processing by
MSPA, the aligned chromatograms were also amplified at the same
peaks’ regions to show the aligning results. One  can see from the
zoomed regions of aligned chromatograms that all the peaks were
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Fig. 7. Total ion chromatograms (TIC) of free fatty acids in plasma: (

uccessfully synchronized. Two images were also created to display
verall variations in peak positions and alignment results of the
ntire chromatograms in a global manner. It can be seen obviously
rom the bottom left image that the lines are in “zigzag” and not
traight enough, which means that there are variations in peak posi-
ions from sample to sample. But after aligning them with MSPA, all
he “zigzag” lines in the bottom left image became the straight lines
n the bottom right image, which means that MSPA can effectively
liminate variations in peak positions from sample to sample. By
omparing the same zoomed regions of unaligned and aligned by
SPA, it can be seen that all peaks’ shapes are intact, which demon-

trated that MSPA has the capacity to preserve peaks’ shape during
lignment.

.3. HPLC fingerprints of fructus aurantii immaturus

Original HPLC fingerprints of fructus aurantii immaturus were
dopted from a previous FAI fingerprints study [58] involving 38
amples and a standard. These fingerprints were aligned by MSPA
ethod as an example to help researchers to apply MSPA method

n quality control of herbal medicines. The alignment procedure
f these fingerprints was initiated by peak detection, width esti-
ation using CWT  derivative. By setting threshold for SNR as 500,

ozens of peaks were detected in each fingerprint. The fingerprint
f standard sample was used as the reference. Then, both the ref-
rence and fingerprints to be aligned can be drawn in the same

lot, and one can easily estimate the maximum shift between the
eference fingerprint and fingerprints to be aligned. In the align-
ent of these FAI fingerprints, the maximum shift was  set as 285.

he unaligned fingerprints are shown in the left part of Fig. 8.
t of TIC before alignment and (b) plot of the aligned TIC using MSPA.

The zoomed “peaks rich” region and the full image are illustrated
in Fig. 8 to provide readers with the detailed view of peak posi-
tion variations and the overview of peak position variations of the
entire chromatograms in a global manner. The aligned fingerprints
by MSPA method are also shown in the right part of Fig. 8. The
aligned fingerprints were also amplified at the same peak regions
to show the aligned results in detail, and one can see that all the
peaks were also successfully synchronized and the shapes of all
the peaks were preserved by comparing the same zoomed region
of unaligned fingerprints and the aligned ones. The aligned finger-
prints are also illustrated in the image. It is clear that all the “zigzag”
lines in the bottom left image became straight in the bottom right
image, which means that MSPA can also effectively eliminate varia-
tions in peak positions of herb medicine fingerprints. By combining
both the detailed views of zoomed region and the overview of the
images, one can come to the conclusion that MSPA can accurately
align the fingerprints of herb medicines, meanwhile preserving the
shapes of the peaks.

4.4. Influence of noise on different derivative calculation methods

Four signals, which consist of the same Gaussian peak but with
noises of different variances, were created to investigate influence
of noise on Haar wavelet and numeric derivative calculation meth-
ods for peak detection and width estimation. For these four signals,
their calculated derivatives by Haar wavelet and numeric deriva-

tive are shown in Fig. 9 to check that which derivative method was
more suitable for peak detection and width estimation. One can
clearly observe from the figure that the numeric derivative method
is only effective when the noise level is lower. When the noise level
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Fig. 8. Fingerprints of fructus aurantii immaturus: (a) plot of fingerp

as higher, SNR of the obtained derivative by numeric derivative
ethod was badly degenerated and it can no longer be used for peak

osition detection and width estimation. By comparing the deriva-
ives by Haar wavelet with numeric derivative methods, one can see
hat the SNRs of the obtained derivatives by Haar wavelet deriva-
ive method are all good enough to be used for accurate detection
f the peak position and estimation of the peak width for all the
our signals with different noise levels.

.5. Influence of baseline on different alignment methods

The simulated chromatograms with and without sinus curve
aseline were used to test the influence of baseline on MSPA,
AFFT and COW methods. Simulated chromatograms without
inus curve baseline were obtained by correcting baseline with
irPLS [10]. The parameters of airPLS for this correction were:
ambda = 104 and order = 2. Baseline correction results can be seen
n Fig. 10.  The alignment results by MSPA methods of uncor-
ected and corrected chromatograms are illustrated in Fig. 10(a)
nd (b) respectively. One can observe that both the uncorrected and
orrected chromatograms are properly aligned by MSPA method,
hich demonstrates that MSPA method is not sensitive to baseline
uring alignment. The maximum shift parameter of MSPA can be
asily set by observing and estimating from the plot of reference
nd chromatograms to be aligned. In this dataset, the estimated
aximum shift using the plot was 85 points, and it worked well

ith MSPA method. The alignment results by RAFFT are plotted

n Fig. 10(c) and (d). The estimated maximum shift from the plot
f reference and chromatograms to be aligned did not work well
ith RAFFT. By enumerating shift from 85 to 10, 70 was chosen
efore alignment and (b) plot of the aligned fingerprints using MSPA.

as the maximum shift of RAFFT which can provide the best align-
ment results. This means that the maximum shift parameter of
RAFFT is not intuitive enough to be adjusted easily, its optimiza-
tion being too time-consuming. From Fig. 10(c) it can be observed
that without baseline correction, RAFFT method can align the peaks
of chromatogram properly. With the same parameter, the first peak
of the baseline corrected chromatogram cannot be aligned properly
by RAFFT in Fig. 10(d), which means that RAFFT method is sensi-
tive to baseline during alignment. COW method was  implemented
by Tomasi [59], which is available at website of R. Bro group [60].
The segment and slack parameters of COW were optimized using
the “grid-search” method, and the optimized parameters were seg-
ment = 22 and slack = 16. Fig. 10(e) and (f) shows alignment results
by COW. All peaks have been well aligned, and thus COW method is
also not sensitive to baseline too. But if one examines and compares
aligned peaks and unaligned peaks carefully, it can be seen that
COW method changes the shapes of peaks during alignment pro-
cedure. The segment and slack parameters of COW method needed
even more time-consuming optimization than RAFFT. Therefore,
in this dataset, MSPA outperforms RAFFT and COW in robustness,
insensitiveness to baseline, capacity to preserve shapes of peaks
and easiness of parameter adjustment.

Concerning the insensitivity to the baseline, in our opinion, it is
because that the detection of peaks in signal and movement of the
peaks are conducted separately in MSPA. The peak shape, in general,
does not change when it was  moved in the whole procedure. On

the other hand, it had little effect on the FFT correlation coefficient
between the detected peak and reference signal when the segment
of each detected peak is small and the baseline is slowly changing
within a narrow range.



102 Z.-M. Zhang et al. / J. Chromatogr. A 1223 (2012) 93– 106

ative c

4

t
u
m
a
b
u
s
t
t
T
R

Fig. 9. Comparison of the influence of noise on different deriv

.6. Alignment quality assessment and speed issue

The fructus aurantii immaturus dataset was difficult to align due
o the large variation between herbal samples, so this dataset was
sed to benchmark MSPA, RAFFT and COW methods. The align-
ent results of fructus aurantii immaturus dataset by MSPA, RAFFT

nd COW are presented in Fig. 11 via images of correlation maps
etween samples. The correlation maps in the right part of the fig-
re show that all the three methods can improve similarity between
amples. If we carefully observe the correlation maps, it can be seen

hat correlation coefficients between samples of MSPA are larger
han correlation coefficients between samples of RAFFT and COW.
he reason is that MSPA can align the peaks more accurately than
AFFT and COW.
alculation methods for peak detection and width estimation.

The alignment quality can also be assessed by the means of the
mean correlation coefficients (mcc) between signals to be aligned
and reference, which can be expressed by following equation:

mcc(r, S) = 1
m

m∑
i=1

⎛
⎜⎝

∑n
j=1(rj − r̄)(Si,j − S̄i)√∑n

j=1(rj − r̄)2
√∑n

j=1(Si,j − S̄i)
2

⎞
⎟⎠ (10)

where r is a vector of the reference signal and S is a matrix, and
each row of S is a vector of signal to be aligned.
Since there are peak shape changes during alignment when
some alignment methods are used, peak area changes should be
also quantified to evaluate the capacity to preserve shapes of peaks
during alignment. The mean relative change in area is adopted to
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valuate the area changes during alignment. The definition of mean
elative change in area (mrca) is
rca = 1
m

m∑
i=1

(∣∣∑n
j=1Ai,j −

∑n
j=1Si,j

∣∣∑n
j=1Si,j

)
(11)
ine on different alignment methods.

where S is a matrix and each row of S is a vector of signal to be
aligned. A is also a matrix and each row of A is a vector of aligned
signal.
The mcc, mrca and mean calculation time of simulated, free
fatty acids in plasma and fructus aurantii immaturus datasets with
MSPA, RAFFT and COW methods are listed in Table 2 to assess
alignment quality and speed of these methods. The parameters for
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Fig. 11. Benchmarks of MSPA, RAFFT and COW methods on fructus aurantii immaturus dataset which is difficult to align because of the large variation between herbal
samples.
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Table 2
mcc,  mrca and mean calculation time of simulated, free fatty acids (FFAs) in plasma and fructus aurantii immaturus (FAI) datasets with MSPA, RAFFT and COW  methods.

Datasets Alignment methodsa mccb mrcac (%) Mean calculation time (s)

Simulated dataset

Unaligned 0.0561 – –
MSPA 0.7764 0.16 0.0540
RAFFT 0.6060 2.14 0.0036
COW  0.8420 14.04 1.5582

FFA  dataset

Unaligned 0.5783 ± 0.4137 – –
MSPA 0.9486 ± 0.0279 0.11 ± 0.21 0.2215 ± 0.3681
RAFFT 0.9382 ± 0.0405 0.30 ± 0.48 0.0058 ± 0.0022
COW 0.9375 ± 0.0607 0.96 ± 1.22 13.2554 ± 0.0665

FAI  dataset

Unaligned 0.2871 ± 0.3054 – –
MSPA 0.8859 ± 0.1314 0.07 ± 0.08 1.0428 ± 0.4373
RAFFT 0.8631 ± 0.1325 0.26 ± 0.40 0.0224 ± 0.0057
COW  0.8751 ± 0.1285 4.46 ± 4.08 160.6447 ± 6.2072

a Parameters for each alignment method on different datasets: for simulated dataset, MSPA (max shift = 85), RAFFT (max shift = 70) and COW (segment = 22, slack = 16); for
FFA  dataset, MSPA (max shift = 300), RAFFT (max shift = 300) and COW (segment = 80, slack = 30); for FAI dataset, MSPA (max shift = 285), RAFFT (max shift = 273) and COW
(segment = 75, slack = 30).
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b mcc, mean correlation coefficients, is used to evaluate alignment quality assess
c mrca, mean relative change in area, is used to evaluate peak area changes durin

ach alignment method of different datasets were optimized by
he same procedures described in Section 4.5,  which are also pre-
ented as footnote of Table 2. For the simulated dataset, alignment
uality of MSPA was much better than the one of RAFFT. Further-
ore, mrca of MSPA is only 0.16%, which means that MSPA can

etter preserve the peak shapes. Although mcc  of COW method
ere larger than the mcc  of MSPA in the simulated dataset, but

ts mrca of COW is 14.04%. We  can question the reliability of the
arge mcc of COW, having been obtained at the cost of peak shapes
rom its large mrca. MSPA obtained the best mcc and mrca in
oth FFAs and FAI datasets among these three alignment methods.
lthough the speed of MSPA is slower than RAFFT, it is accept-
ble that alignment of fingerprint with 12,000 data points by MSPA
akes only about 1 s. Both MSPA and RAFFT are much faster than
OW. From Table 2, one can deduce the following conclusions
bout these alignment methods: (1) MSPA can synchronize sig-
als with better alignment quality than RAFFT and COW; (2) RAFFT
as the best alignment speed, and alignment speed of MSPA is
cceptable even for large dataset with dozens of thousands of data
oints; (3) COW is too slow to align large dataset and changes the
hapes of peaks more seriously than RAFFT and MSPA. It seems
hat MSPA has the best balance between alignment quality and
peed.

. Conclusion

Massive chromatographic datasets can be accurately and rapidly
ligned by the proposed MSPA method when two  intuitive
arameters, namely threshold for SNR and maximum shift, are
roperly set. By testing with simulated, real chromatograms
nd comparisons with several widely used alignment meth-
ds, it was demonstrated that MSPA method has the capacity
o preserve the shapes of peaks, performs well with nonlin-
ar retention time shifts, can avoid locally optimal problem and
eems robust and not sensitive to noise and baseline. Further-
ore, the availability of source code makes MSPA to be easily

ustomized and optimized for particular applications and more sig-
ificant to a broad range of chromatography researchers. These
dvantages guarantee that MSPA may  address the challenges
f alignment of massive dataset in metabolomics and quality

ontrol of herbal medicines, which enables researchers to pre-
rocess, analyze, interpret and extract useful information from
hese datasets within an acceptable time using statistics and
hemometrics.

[

[
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[

the larger the better.
ment, the smaller the better.
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